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a b s t r a c t

Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the
surrounding damage zone collectively provide quantitative definition of fault growth and are commonly
measured in terms of the maximum fault slip. The field observations indicate that a common mechanism
for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring
fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via
cataclastic deformation. The most important underlying mechanical reason in both cases is prior
weakening of the rocks surrounding a fault’s core and between neighboring fault segments by faulting-
related fractures. In this paper, using field observations together with effective medium models, we
analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related
brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture
densities or equivalent fracture spacing values corresponding to the vanishing Young’s, shear, and quasi-
pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The
fracture densities or the equivalent spacing values obtained using this method compare well with the
field data measured along scan lines across the faults in the study area. These findings should be helpful
for a better understanding of the fracture density/spacing distribution around faults and the transition
from discrete fracturing to cataclastic deformation associated with fault growth and the related
instabilities.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Strike-slip faults, similar to other types of faults, typically have
complex architectures with numerous segments or strands of
various trace lengths separated by steps or relays of various sizes
(Fig. 1a). This discontinuous characteristic of strike-slip faults has
been reported for simple incipient faults (Segall and Pollard, 1980,
1983; Gamond, 1983; Sibson, 1986; Willemse et al., 1997; Peacock
and Sanderson, 1995) as well as for mature crustal-scale faults
(Aydin and Nur, 1982; Barka and Kadinsky-Cade, 1988; Wesnousky,
1988; Stirling et al., 1996; Kim et al., 2004) and is thought to be
pertinent to a number of properties of strike-slip fault systems
including their permeability structure (Sibson, 1985; Martel and
Peterson, 1991; Aydin, 2000; Odling et al., 2004), the dynamics and
size of earthquake ruptures (Aki, 1989; Harris and Day, 1999; Harris
et al., 1999; Wesnousky, 2006; Shaw and Dieterich, 2007), the
spatial and temporal evolution of earthquakes (Dewey, 1976;
ll rights reserved.
Toksöz et al., 1979; Stein et al., 1997), and growth and scaling of
faults (de Joussineau and Aydin, 2009; Scholz, 2002).

One of the fault scaling relationships concerns fault length (L) to
maximum fault slip or displacement (D). Various studies of mostly
normal faults (Watterson, 1986; Walsh and Watterson, 1987; Cowie
and Scholz, 1992; Schlische et al., 1996; Scholz, 2002) concluded
that the length–slip relationship has the form, L ¼ Dn, where n was
proposed to be between 1 and 2.

Neighboring segments of strike-slip faults are separated by
steps (Fig. 1a). These steps have self-similar geometry regardless of
the sense of stepping and sense of shearing (Aydin and Schultz,
1990; Aydin and Nur, 1982). However, the failure modes and the
distribution of the shearing-related structures may be different
from one sense of step to another depending on loading, stress
perturbations, rheology, and the geometry of initial pre-faulting
discontinuities (Kim et al., 2004; Myers and Aydin, 2004; Peacock
and Sanderson, 1991, 1995; Burgmann and Pollard, 1994; Sibson,
1986; Gamond, 1983; Rispoli, 1981).

A data set collected by Wesnousky (1988) from crustal-scale
strike-slip faults suggests that the number of steps per kilometer
along strike-slip faults decreases as fault slip increases. Although it
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Fig. 1. Idealized diagrams showing: (a) segmentation along strike-slip faults and their
segment lengths, heights and step numbers. Overlaps (or step lengths) and step widths
(or fault separations) are also shown in inset. (b) Internal architecture of a strike-slip
fault showing fault core, which includes fault rock and slip surfaces, and the
surrounding damage zone.
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is difficult to define uncertainty regarding the fault dimensions
measured from published geologic and seismologic maps, recent
experimental (Otsuki and Dilov, 2005) and site-specific field data
from the same tectonic region and lithology and similar resolution
(de Joussineau and Aydin, 2009) appear to confirm this trend. It is
also interesting to note that larger size of steps is associated with
faults having larger maximum slip magnitudes (Aydin and Nur,
1982; de Joussineau and Aydin; 2009), possibly related to the ability
of fault slip to jump from one fault segment to next over the fault
steps between them (Shaw and Dieterich, 2007; Harris and Day,
1999; Harris et al., 1999).

The fault length-slip, and step count per kilometer length
relationships, regardless of their exact form, imply that faults, like
other types of geological structures having different senses of
displacement discontinuity, start small in length and grow larger in
time and space. As faults grow longer, they are able to interact with
the neighboring faults at greater distances. Consequently, faults
extend their lengths by linkage and coalescence of smaller segments
through fault steps in order to accommodate larger amount of slip
(Segall and Pollard, 1983; Martel et al., 1988; Martel, 1990; Peacock
and Sanderson, 1995; Cartwright et al., 1995; Dawers and Anders,
1995; Pachell and Evans, 2002; Scholz, 2002; Myers and Aydin,
2004; de Joussineau and Aydin, 2009). It follows that the fault
length-maximum fault slip plots for faults which grew by linkage
and coalescence for any single fault zone is not actually continuous
but rather have sharp ‘‘jumps’’ coinciding with large increases in
lengths at the merger of neighboring segments and ‘‘flats’’
corresponding to the time span between the consecutive merger
instances, in which fault lengths stay nearly constant while fault
slips increase to the limiting length/slip ratio (Cartwright et al.,1995)

Another type of fault scaling relationship illuminates how fault
zones become wider as they grow (Fig. 1b). Field data (Hull, 1988;
Robertson, 1983; Knott et al., 1996) and theoretical considerations
(Scholz, 2002) suggest that the width or thickness of faults
increases linearly with fault slip. Agosta and Aydin (2006) and de
Joussineau and Aydin (2007) proposed that fault rock zones grow or
widen perpendicular to their trend at the expense of highly
fractured inner damage zone via cataclastic deformation. This
widening is also influenced by the width of the steps along faults
(Kim et al., 2004; Childs et al., 2009), which are precursors of fault
cores.

An important consequence of lengthening of faults by linkage
and coalescence is that larger magnitude of slip takes place in
merged or composite segments which tend to straighten the overall
through-going fault trace with respect to the earlier segmented or
discontinuous trace. This process, which appears to be a second
order shear localization phenomenon immediately after the fault
zone attains the next composite configuration, is referred to as
through-going faulting, fault straightening, and fault zone simpli-
fication (Cox and Scholz, 1988; Reches and Lockner, 1994; Le Pichon
et al., 2001; Scholz, 2002; Ben-Zion and Sammis, 2003).

As this short introductory account indicates, the discontinuous
geometry of strike-slip faults, their segmentation, the geometry
and scaling of the segments and steps, and their impact on earth-
quake rupture, fluid flow and mineralization have attracted
considerable interest in the literature. However, aside from
a number of papers addressing the stress state between neigh-
boring faults and the type and orientation of the linkage structure
(Segall and Pollard, 1980; Pollard and Segall, 1987; Du and Aydin,
1993; Crider and Pollard, 1998; De Bremaecker and Ferris, 2004),
very little attention has been paid to quantification of the elastic
parameters leading to the growth of the fault dimensions. To this
end, only a handful of studies address these criteria. The first group
of these papers includes those dealing with calculation of the
critical damage parameters at fault steps in terms of strain invari-
ants (Lyakhovsky and Ben-Zion, in review; Lyakhovsky et al., 1997).
The second category is rather empirical and is based on a field
survey of normal faults and subsequent analysis of displacement-
segment separation ratio to define those fields with unlinked and
linked configurations (Soliva and Benedicto, 2004). A large number
of publications deal with calculating effective moduli of fractured
materials (Lockner and Madden, 1991; Sayers and Kachanov, 1991;
Berryman and Grechka, 2006; Grechka and Kachanov, 2006;
Berryman, 2008; Griffith et al., 2009). However, these do not
address directly the subject of the actual fault growth and the
related problems.

In this paper, we present natural and idealized fracture patterns
around faults and within fault steps from the Valley of Fire State
Park, Nevada, and use effective medium theory to investigate how
rocks around and between fault segments weaken by faulting-
related fractures and, consequently, how these intensely fractured
rock masses may facilitate the growth of fault dimensions. Effective
medium theory (sometimes called mixture theory, averaging,
up-scaling or homogenization) is a collection of analytical methods
designed to capture average properties and behaviors of very
complex and heterogeneous media (Berryman, 2008). These
methods have been applied to almost any type of complex system
and physical property, but they tend to work best for quasi-static
behaviors such as those considered in the present paper. A related
paper (Berryman and Aydin, in press) dealing with the method-
ology in more detail for calculating effective moduli of fractured
media will be presented somewhere else.
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2. Geological background

For more than a decade, one of us (A.A.) and his students have
been studying the initiation, interaction and growth of brittle,
primarily strike-slip faults in the Jurassic eolian Aztec Sandstone
with excellent exposures in the Valley of Fire State Park, about 60 km
northeast of Las Vegas, Nevada (Fig. 2) (Çakir and Aydin,1994; Flodin
et al., 2005; Myers and Aydin, 2004; Flodin and Aydin, 2004; de
Joussineau and Aydin, 2007, 2009; de Joussineau et al., 2007). We
have documented that these Cenozoic faults (Bohannon, 1983) with
both left- and right-lateral offsets ranging from a few millimeters to
a few kilometers initiated from a system of joint zones by shearing of
the joints, formation of new splay fractures and their subsequent
shearing. By mapping of strike-slip faults with increasing magnitude
of slip, the mechanism of fault growth was established to be the
linkage and coalescence of initially sheared joint zones and of fault
segments at progressively greater scales (Myers and Aydin, 2004;
Flodin and Aydin, 2004; de Joussineau and Aydin, 2007). It was also
concluded that the pattern and orientations of these faults within
the Valley of Fire and the surrounding area are reminiscent of the
large size strike-slip faults in the southeastern Basin and Range
province (Çakir et al., 1998). The conceptual models and the field
data in the next two sections ultimately rest upon these early
publications as well as some new data and synthesis.
3. Conceptual models

Fig. 1a is an idealized diagram illustrating fundamental
geometric attributes of strike-slip faults. Along-strike view shows
segments with various lengths (l1,l2,.,ln), which include the slip
vector direction by definition. Hence, identifying segments assures
a basis for determining mean and maximum segment lengths. This
view also shows discontinuities along the trace length in the form
of steps (s1,s2,.,sn � 1) with overlaps (o1,o2,.,on � 1) and widths
(w1,w2,.,wn � 1) or separations (Fig. 1a inset). These parameters
provide the bases for calculating the number of steps per length,
and the size of the steps along a given strike-slip fault.

Down-dip view also includes segments with steps. We will not
consider down-dip segmentation and steps because these steps do
not provide much resistance to strike-slip motion due to the slip
Fig. 2. Location and simplified map of the faults of Cenozoic age in the Valley of Fire region
LMFS, Lake Mead Fault System; LVVSZ, Las Vegas Valley Shear Zone. Rectangle marks the l
vector being horizontal and therefore the linkage is relatively
simple. In vertically anisotropic lithologies, the problem becomes
more complex by the presence of inelastic rocks such as shale,
which is out of the scope of this paper.

Fig. 1b shows a detailed view of fault zone architecture with
a fault core, made up of fault rock and slip surfaces. Fault rock is the
product of fragmentation and cataclasis when a highly fractured
rock is disaggregated, fracture-bounded blocks rotate and translate
and grains crush. Slip surfaces are discrete structures that accom-
modate shear displacement along polished and striated surfaces
which usually run through, or occur adjacent to, the fault rock. Fault
cores are flanked on both sides by a damage zone which includes
a complex fracture system of splay joints and sheared splay joints of
various generations. We note that, as depicted in the diagram, the
distributions of fault rock and damage zone are highly irregular. The
diagram in Fig.1b also illustrates the notion that one of the major slip
surfaces within the fault core may be continuous from one end to the
other, which is meant to represent a through-going fault surface, and
accommodates a large portion of the total slip across the fault zone.
4. Field data

Here, we focus on dimensional attributes and growth processes
of a network of strike-slip faults exposed in the Aztec Sandstone
cropping out in the Valley of Fire Sate Park and its surroundings
(Fig. 2). Although the geometric and mechanical properties of the
strike-slip faults at this location appear to be similar to those
strike-slip faults from different regions (de Joussineau and Aydin,
2009) as summarized in Section 1, we restrict our statistical and
conceptual models to the cases that we studied in some detail at
the Valley of Fire State Park for two reasons. One is that the
mechanisms of fault initiation and growth are well known and the
precision of measurements is very good and fairly uniform in
a wide range of scales.
4.1. Fault segment length, step number and dimensions, and fault
width

Data from about 20 well-exposed faults in the study area show
that the mean segment length increases with the maximum fault
of southern Nevada. Heavy lines are faults. Arrows indicate predominant sense of slip.
ocation of the Valley of Fire State Park.



Fig. 3. Idealized diagrams summarizing general trends of (a) mean segment length
and number of steps per kilometer, and (b) mean fault rock and mean damage zones
widths as the maximum fault slip increases.
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slip (de Joussineau and Aydin, 2009) as idealized in Fig. 3a. Here, we
use a simple idealized trend because the exact nature of the
relationship is not the focus. Data collected from the same faults
also show that the number of steps per kilometer decreases as
a function of the maximum fault slip. Stating this result in a simpler
way; when n number of segments is reduced to n � 1 segments by
linkage of the two neighboring segments, then, n � 1 number of
steps will be reduced down to n � 2 steps by destruction of one of
the steps.

The damage zone and fault rock widths increase with increasing
fault slip (de Joussineau and Aydin, 2007, 2009; Flodin et al., 2005;
Myers and Aydin, 2004). These relationships are not locally smooth,
but regardless of the actual forms, can be idealized as shown in
Fig. 4. (a) Incipient right-lateral shearing (w2 cm) of a series of echelon joints with right ste
segments at the steps. From Myers and Aydin (2004). (b) Two sets of splay fractures at and
sets have a range of intersection angles from 30� to 60� . From de Joussineau and Aydin (20
Fig. 3b. These trends are more meaningful for considering either
mean or maximum widths versus maximum slip values. For
example, the damage zone widths are controlled primarily by the
location, angle and length of the splay fractures (de Joussineau
et al., 2007) whose distribution about the fault may be highly
nonuniform.

The nature of fracturing at small fault steps can be characterized
as initial splay fracturing in response to shearing of the echelon
joints (Fig. 4a) and then shearing of the 1st generation of splay
fractures and formation of a 2nd generation splay fractures that
connect the sheared 1st generation splay fractures (Fig. 4b). The
intersection angle between the sheared joints and the 1st genera-
tion splay fractures varies from about 15� to 85� with an average
value of about 19� for isolated sheared joints, and about 50� for
subparallel interacting sheared joints (Fig. 5a,b and Table 1a).

Terminal areas of a fault zone generally reflect the incipient
stages of fault development. In this regard, Fig. 6 shows a portion of
a fault zone that has w65 cm maximum observable right-lateral
slip elucidating the transition from an echelon sheared-joints array
to a through-going fault formation. Similar to the cases shown in
Fig. 4, shearing of the initial joint system resulted in splay fracturing
and continued shearing facilitated the formation of multiple sets of
sequential splays localizing into discontinuous pockets of high
density fractures, and, in places, fragmentation zones. The incipient
short slip surfaces eventually go through these pockets of weak-
ened rock at fault steps.

The photographs and maps in Fig. 7a,b show a well-exposed fault
of about 14 m left-lateral slip, which displays several characteristic
architectural elements common to all strike-slip faults in the study
area: Fault rock, slip surfaces, and damage zone. Fig. 7a shows
domains of different deformation zones and of fracture densities,
which allow one to see a simpler picture of elongated, noncolinear
bodies of the fault rock and the adjacent areas of high fracture
density. Fig. 7a,b also shows slip surfaces in various orientations and
sizes, one of which is continuous from one end of the mapped area to
the other going through the elongated bodies of fault rock. There are
also short slip surfaces terminating at an acute angle to the
rectilinear strings of fault rock (Fig. 7b). We interpret these diagonal
short slip surfaces as relics of the initial sheared joints and the high
ps. Splay fractures at high-angle to the sheared joints are localized near the tips of the
around a right step along a strike-slip fault with about 80 cm right-lateral slip. The two

09).



Fig. 5. Histograms showing the distribution of the intersection angles between faults
and their splay fractures (splay angles) for more than 750 measurements. (a) For
isolated faults, and (b) for closely spaced, interacting subparallel faults. From de
Joussineau et al. (2007).

Table 1
(a) The average fracture intersection angles for isolated faults and their splays (19�),
and for closely spaced interacting subparallel faults and their splays (50�). From de
Joussineau et al. (2007). (b) The spacing range defined by the best fit line to the
smallest end of the spacing distribution of the fault-related fractures in the study
area. From de Joussineau and Aydin (2007). The spacing values obtained by this
method are between w1 and 5 cm with the largest concentration between 1 and
2 cm (see inset 1). The angular differences between the scanline and fault-related
fractures for 14 m fault (inset 2 in which the bins represent intervals of 0–9, 10–19,
etc.). More than 75% of the fractures make angles larger than 50� to the scanline (see
the diagram within inset 2 for designing the angle between scanline and a fracture
set (a) and the true and apparent spacing (St and Sa, respectively)). This requires
a maximum correction factor of about 0.77.

a
Pattern
type

Average
splay
angle

Inset 1

Isolated/single
fault

19�

Interacting
faults

50�

b
Fault Spacing

range
(cm)

Inset 2

80 cm 1.5–18
8 m 2.0–39
14 m 2.0–51
80 m 1.4–110

Mixed
Scanline #1 2.0–52
Scanline #2 0.9–14
Scanline #3 5.0–38

A. Aydin, J.G. Berryman / Journal of Structural Geology 32 (2010) 1629–1642 1633
intensity fracture zones, to a large extent, fracture localization
between these sheared joints. Then, the fault rock and the associated
slip surfaces subparallel to the fault core represent the architecture
of a new progression in fault growth with a through-going fault core
and slip surface representing the latest linkage and coalescence
structure, for this portion of the fault. This elucidation makes an
important point that any given stage of progressive faulting includes
overprinted patterns of fault zone elements, which poses a major
challenge in predicting a fault’s architecture without sufficient
information for its deformation history.

The 14 m fault described above also displays characteristics of
its damage zone. Fig. 8a,b shows photos and details of fractures on
one side of this fault. The fault core and the inner and outer damage
zones are shown in Fig. 8a. The details of the inner damage zone are
shown in Fig. 8b. Here, several generations of splay fractures are
identified based on their abutting relationships and marked by
different color codes. The younger ones fill in between the echelon
sheared joints of the initial stage (de Joussineau and Aydin, 2007).
Fig. 8c shows a photo and a detailed map of fine- and coarse-
grained fault rocks and major through-going slip surfaces along
a strike-slip fault with about w25 m left-lateral slip. Some of the
earlier fractures within the coarse-grained fault rock can still be
identified (dotted lines). Also important to point out are the
triangular pockets of fine-grained fault rock protruding into the
damage zone on the left hand side of the fault core, where
the fracture intensity appears to be high. The triangular zones
between one of the main slip surfaces and sheared splay fractures
(one marked in the map as ‘‘x’’) are known to be the location of
higher fracture concentrations based on observations at other
locations with similar geometric settings (Flodin and Aydin, 2004).

A conceptual model depicting linkage and coalescence of fault
segments or strands which result in longer segment lengths,
reduced number of fault steps per kilometer, and wider damage
zones and fault core with increasing fault slip is shown in Fig. 9. In
a simple way, the model illustrates how strike-slip faults grow via
an interrelated series of processes including splay fracturing,
shearing of splay fractures, segment linkage, and formation of
through-going slip surfaces in a hierarchical manner. Progressive
lengthening of the linked segments, in turn, drives splay fractures
to farther distances from the main body of the fault and thus
increases the size of potential steps and eventually the widths of
fault cores and fault damage zones.

The types of field data crucial for the fault growth are the
density or spacing of the fault-related fractures as well as their
patterns. In the study area, a vast amount of data is available for the
distribution of the fault-related fractures (de Joussineau and Aydin,
2007, 2009; de Joussineau et al., 2007; Flodin and Aydin, 2004;
Myers, 1999). Fig. 10a displays one of these for the left-lateral fault



Fig. 6. Detailed map of the end of a small shear zone of about 65 cm observable
maximum right-lateral slip showing a set of slightly sheared and highly overlapped
echelon joints and sheared joints with many splay joints at high-angle to the sheared
joints. Gray shading marks narrow pockets of fragmentation and thick lines show
incipient through-going slip surfaces orientated at a small-angle to the sheared initial
echelon joints. Slightly revised from Davatzes and Aydin (2004).
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with 14 m slip referred to earlier in this manuscript (see Figs. 7 and
8). The spacing distribution for the fault-related fractures for this
fault has been determined along 8 scanlines perpendicular to the
fault trace in intervals about 2–6 m recording the distance,
Fig. 7. (a and b). Detailed maps of a strike-slip fault with about 14 m left-lateral slip. (b) show
sheared splay joints) around the fault core (Myers and Aydin, 2004) whereas (a) shows a ne
fault rocks and highly fractured domains of occasionally fragmented damage zone are deline
surfaces (dotted lines) diagonal to the through-going slip surface are highlighted. The geome
sheared joints observed along faults with smaller slip in the area. The original map by R. M
orientation and length of the fractures with a resolution of 0.5 cm.
The spacing has been calculated as the distance between consec-
utive fractures. Of interest here is the spacing distribution on the
smaller end of the spectrum identified by the linear trend in the
spacing distribution plot which defines a range of spacing values
from 2 to 51 cm (see Fig. 10a). Fig. 10b shows the fracture spacing
distribution obtained from a single scanline across many faults with
aggregate slip on the order of a few hundreds of meters. Here the
range of the smallest linear spacing trend is 5–38 cm. In both cases,
we focus on the smallest ends of the ranges, 2 cm in Fig. 10a and
5 cm in Fig. 10b) which represent the smallest fracture spacing for
a statistically significant number of data points measured near the
fault cores. Similarly, in Table 1b, the spacing ranges defined by the
linear fits to the smallest slopes in the distribution of data, and the
corresponding minimum spacing values, for three other faults and
two additional scanlines across a number of faults are given. As
shown in the histogram summary (inset 1) a majority of the
minimum spacing values falls between 1 and 2 cm. Considering the
minimum measurable spacing was 0.5 cm, these numbers are well
above the minimum resolvable spacing.
5. Analysis using effective medium models

The premise of this study is that a certain degree of high
intensity fracturing at fault steps and fault damage zones weakens
the rock masses thereby facilitating fault lengthening through
linkage and coalescence of neighboring segments and fault zone
widening by incorporation of the fractured and fragmented
material into the fault rock via a cataclastic process.

Next, we will use effective medium models to investigate the
degradation of the strength and reduction of resistance to
cataclastic deformation, which presumably pave the way for the
setting of through-going faults. Given the complexity of the
s the orientations, lengths, and intersections of damage zone fractures (splay joints and
w reinterpreted version of the same fault architecture in which noncolinear pockets of
ated in the field. One through-going slip surface (thick solid line) and several short slip
try and distribution of many of short diagonal slip surfaces resemble the initial echelon
yers (1999); the present version was revised from Davatzes and Aydin (2004).



Fig. 8. Damage zone characteristics around the strike-slip fault with w14 m left-lateral slip. (a) Two fractured domains were distinguished: The inner damage zone of high fracture
density right next to the fault core; and the outer damage zone of significantly lower fracture density. (b) A detailed map of the inner damage zone shows that several generations of
splay fractures (marked by different color codes) fill in between the echelon sheared joints of the initial stage. (a,b) From de Joussineau and Aydin (2007). (c) Detail map showing
fine- and coarse-grained fault rock and major through-going slip surfaces along a left-lateral fault with about 25 m left-lateral slip. Some of the earlier fractures within the coarse-
grained fault rock can still be identified (dotted lines). Also important to point out triangular pockets of fine-grained fault rock protruding into the damage zone in some locations on
the left hand side of the fault core, where the fracture intensity is the highest.
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fractures around faults, the problem is obviously rather difficult
and, at this stage, further simplification is desirable for applications
to an effective medium theory. We first idealize the common
fracture patterns in terms of their orientation-intersection angle,
length, and density (Fig. 11a). We then study parametrically the
effective elastic moduli of such a configuration as a function of
fracture density for each idealized fracture pattern defined by the
angle between fracture sets in order to assess the degree of
degradations in the moduli values as the fracture density increases.
The details of the effective medium theory that we shall employ
have been recently described by Berryman and Aydin (in press) and
is based on the earlier work by Backus (1962), Schoenberg and Muir
(1989), and Berryman and Grechka (2006).

Fig. 11a shows an idealized fracture network which is consistent
in principle with the sequential formation of two fracture sets and
their ultimate pattern, the examples of which can be seen in Figs. 4,
6, 7, and 8. Here the lengths (l) of the fractures, the density (r) or
spacing (s) of the fractures, and angle (FF) between the two sets of
fractures characterize the pattern in a layer with a thickness, h.

One of the most commonly used fracture density concepts goes
back to Bristow (1960) and Budiansky and O’Connell (1976). For
a set of rectangular flat (or a ribbon-shaped) fractures, which is the
most pertinent to physical properties of fractured media such as
resistivity, fluid flow, and elasticity, is

r ¼ nh2l (1)

where n ¼ N/V, with N and V being the number of fractures and the
rock volume, respectively. The volume, V is equal to lhs where l, h,
and s are average fracture length, height, and spacing, respectively.
Taking t as the average fracture thickness or fracture aperture, the
porosity of a system of rectangular flat fractures with an average



Fig. 9. Conceptual model showing linkage and coalescence of fault segments or strands which result in longer segment lengths, reduced number of fault steps, larger step sizes, and
wider damage zones and fault rock zones with increasing fault slip. From de Joussineau and Aydin (2007).
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spacing value, s, is defined as a fraction of the spacing distance
occupied by the pores:

4 ¼ lht=V ¼ t=s (2)

Then, the fracture density is given as

r ¼ h=twh=s (3)

Based on Eqs. (2) and (3), we find that the fracture density as
defined here is proportional to height or bed thickness over spacing
and is dimensionless. The fracture density of, for example, 1.0,
corresponds to a commonly observed average spacing for one set of
opening mode fractures in a bed, for which the average spacing, s,
Fig. 10. Fracture spacing distributions: (a) for the 14 m fault and (b) across an area which in
data at the smallest ends of the spacing range are also shown. The smallest spacings defin
thought to be unstable. Slightly changed from de Joussineau and Aydin (2007).
scales with the bed thickness, h, for well-developed fracture
systems (Wu and Pollard, 1995; Bai and Pollard, 2000). Thus, for
a bed thickness of 5 cm, the average spacing is 5 cm. For two sets of
overlapping fracture systems of equal density in a bed, the value for
the density approaches 2.0, and the average spacing is h/2. For a bed
of 5 cm thick, the equivalent spacing for the two overlapping sets is
2.5 cm.

5.1. Compliance matrix and the corresponding Young’s and shear
moduli components

The quasi-static equation of elasticity using Voigt notation is
(Nye, 1985; Pollard and Fletcher, 2005):
cluded many faults with an aggregate slip of a few hundred meters. The line fits to the
ed by these linear trends are taken as the critical values below which the systems are



Fig. 11. (a) A simplified and idealized fracture pattern at fault steps and within inner
damage zones. The pattern is defined by the angle (FF) between the two fracture sets
and lengths (l) and density (r) of the fracture systems. Fracture density is proportional
to the ratio of layer thickness or fracture height (h) to average spacing (s). (b,c) Block
diagrams showing the procedure to represent layers with each fracture set and the
configurations of the layers for averaging the effective properties in z- and x-directions
or 3- and 1-directions, respectively. The block diagrams represent stacking up layers
vertically in z-direction ((b) sandwich configuration) and arranging the layers side by
side in x-direction ((c) contiguous configuration).
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where 3 and s are the six independent components of strain and
stress, respectively, and S is the symmetric 6-by-6 compliance
matrix. The numbers 1, 2, 3 always indicate Cartesian axes (say, x, y,
z respectively). Elastic extension in the x- or 1-direction is denoted
by 311, etc., while a shearing (torsion or twisting) strain around the
x- or 1-axis is represented by 323, etc. Similarly, the normal stress or
tension in the x-direction is s11, and the shear stress around the
x-axis is symbolized by s23, etc.

For any system, the full compliance matrix (Eq. (4)), or its
inverse, the stiffness matrix, has six eigenvectors, each of which is
a 1 � 6 matrix and is associated with a scalar eigenvalue. If S is the
matrix, v is the eigenvector, and c is the eigenvalue, then by defi-
nition Sv ¼ cv. This means that when matrix S is multiplied by
vector v, the result is a vector proportional to v, and the constant of
proportionality is the eigenvalue c. There are always 6 distinct
eigenvectors. However, eigenvalues may or may not all be distinct.
For an isotropic system, five of these eigenvalues are for shearing
modes and one is for pure compression/tension mode. Of the five
shearing modes, three are the independent torsional or twisting
motions and/or the corresponding stresses; for example, in an
isotropic system, 323, couples simply to s23, while all the off--
diagonal compliances and/or stiffnesses involving subscripts 4, 5, 6
vanish identically. Two other types of shear modes are eigenmodes
for an isotropic system; for example, when s22 ¼ �s11, we have
a comparable ‘‘push-pull’’ or ’’pure shear’’ mode resulting in the
eigen-response 322 ¼ �311 for the strain. For the isotropic case,
there are three distinct versions of these pure shear behaviors that
give analogous results, but for nonisotropic systems usually only
one of these will actually be an eigenmode – the most common
example of this behavior being for transversely isotropic systems.

In the presence of a set of perfectly parallel fractures in an
otherwise isotropic elastic medium, the elastic matrix becomes
transversely isotropic. The plane of the parallel fractures is the
plane of symmetry, and the direction perpendicular to this plane is
the axis of symmetry. Elastic behavior strictly within the plane of
symmetry (i.e., two-dimensional behavior in this plane) remains
isotropic, which is the origin of the term ‘‘transverse isotropy’’ –
this type of isotropic behavior thus occurring transversely to the
axis of symmetry.

When analyzing such systems in three-dimensional space, it is
common to choose the axis of symmetry to coincide with one of the
spatial axes, x, y, and z, or 1, 2, and 3, respectively. This choice makes
no difference to the final results but makes some difference to the
level of difficulty in obtaining those results. In particular, making
a good choice of axes can simplify the matrix of elastic coefficients
somewhat, so that, for a set of parallel fractures, we have
a compliance matrix in the Voigt (Nye, 1985) 6 � 6 matrix form of
the elastic tensor notation:

S ¼

0
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Thus, for orthorhombic symmetry, the diagonal components of
the matrix; the Young’s moduli E11, E22, and E33 and the shear
moduli G44, G55, and G66 are inversely related to these diagonal
components. Note that the zero matrix elements were left blank
in Eq. (5) for simplicity as is standard practice. A particular
modulus that we call qGp, for quasi-pure shear mode is also
calculated because it is likely to play a role in the failure of the
systems we examine here, and it is well known in the geological
sciences. The mode qGp is actually an eigenvector of the system
considered, but its physical interpretation is not simple, because it
is not exactly any one of the six standard modes of a simple elastic
system pointed out earlier. However, its behavior is very close to
that of a pure shear mode and that is why the term ‘‘quasi’’ is used
here.

In calculating these components of the effective elastic moduli
for a medium with Poisson’s ratio of 0.4375 appropriate for sand-
stone, which has two fracture sets (Fig. 11a), we follow an approach
based primarily on layer averaging methods of Backus (1962) and
Schoenberg and Muir (1989). The details of the mathematical
analysis of the effective properties of such a composite system are
given by Berryman and Aydin (in press). Basically, two different
layers each containing one set of fractures with the same density (r)
but possibly differing distributions, are considered for the effective
moduli calculations (Fig. 11b). After constructing one layer with one
of the fracture sets, this layer is rotated in such a way that the
combined fracture system will have the desired angle between the



A. Aydin, J.G. Berryman / Journal of Structural Geology 32 (2010) 1629–16421638
two fracture sets. This is done by rotating each layer plus/minus one
half of the angle between the two fracture sets. In this paper, we
investigate cases where the angles between the two fracture sets
(FF) are 15�, 30�, 45� and 60�. The two layers are either stacked up,
which we call ‘‘sandwich’’ configuration (Fig. 11b) or are placed side
by side, which we call ‘‘contiguous’’ configuration (Fig. 11c). The
former is used for averaging in the z- or 3-axis whereas the latter is
used for averaging along the x- or 1-axis. Another side by side
contiguous configuration similar to that in Fig. 11c is used for
averaging along the y- or 2-direction. Both the contiguous and
sandwich configurations represent interacting but not intersecting
fracture arrays.

Fig. 12 shows the plots of the calculated effective moduli; (a) for
the Young’s moduli, (b) for the shear moduli, and (c) for the quasi-
shear moduli for ‘‘pure shear’’ for each of the four different fracture
configurations defined by the angle FF ¼ 15�, 30�, 45�, and 60� and
for a range of fracture densities from 0 to 0.2. This range of density
is constrained by the availability (from previous work of Berryman
and Grechka, 2006) of the fracture influence coefficients which are
required for the effective property calculations. The results show
that the E11 components of the Young’s moduli for all four fracture
configurations do not change at all (all four lines overlap along the
top blue line in Fig. 12a) with increasing fracture density up to 0.2.
This is because E11 corresponds to uniaxial loading in the x- or
1-direction and the changes of the angles and densities of fractures,
as seen from this direction edge-on, make no difference on the
effective moduli. The E22 and E33 components show systematic
decrease for all configurations as the fracture densities increase. We
note that the E22 for the configuration FF ¼ 60� and 45� experiences
greater decreases for the range of densities than fracture sets with
other intersection angles, whereas E33 shows greater decreases for
configurations with smaller intersection angles, FF ¼ 15� and 30�.
For example, the effective Young’s modulus, E33, corresponding to
FF ¼ 15� at a fracture density of 0.2 shows about 34% reduction
with respect to the value for a medium without any fractures
(r ¼ 0). We note that the plots for E22 and E33 have segments with
different slopes indicating the nonlinear nature of the moduli
variations as the density increases. Since the change of slope occurs
at the fracture densities for which the calculations were performed,
the change would have been smoother if more runs with inter-
mediate fracture density values were performed.

The plots for the shear moduli components for the four fracture
configurations are given in Fig. 12b. They all are nearly linear except
one (G44-shearing about the 1- or x-axis). G66 and G55 (shearing
about the vertical 3- or z-axis and the 2- or y-axis, respectively) get
monotonically weaker for the density range used. However, these
moduli show the largest decreases for the fracture configurations
60� and 15�, respectively. The greatest decrease of the shear moduli
occur in the G44 and G55 components (shearing about the 1- or
x-axis and 2- or y-axis, respectively) corresponding to the fracture
configurations with the lowest angle, FF ¼ 15�. However, this
decrease amounts to about 20% of the modulus for a medium
without any fractures. The curves for G44 components have
a crossover at a fracture density, r, between 0.1 and 0.15. This
crossover is curious and remains to be investigated further.

Fig. 12c shows the variation in the effective quasi-shear modulus
for pure shear (qGp) as being one of the special cases. This
parameter shows a smaller variation of about 5% (with respect to
the modulus for the no-fracture state) for FF ¼ 60� at the highest
fracture density (0.2) used in the calculations.

5.2. Extrapolations

Because the concept of elasticity is based on energy storage in
the elastic material/medium, there is an elastic conservative energy
associated with the elastic system. Each eigenvalue is a measure of
the elastic energy that can be stored in the system associated with
its elastic matrix. Since these stored energies must be positive
quantities, it follows that the eigenvalues themselves must all be
positive. If any elastic eigenvalue for a system vanishes, then this
means that it is impossible to store energy in this particular mode
and that the strain of the system increases without additional stress
if it is attempted to excite this mode. This condition defines
a mechanical instability in the system. So it is reasonable to use this
condition as one definition of mechanical system failure, and this is
why we look for the appearance of such failed modes in our analysis
of elastic system response. However, the vanishing values that we
want lie outside the range of values in our plots. This is because, as
pointed out earlier, the required fracture influence coefficients are
not presently available for values outside of the range of densities
considered here.

The ways in which the shear and quasi-shear moduli vary with
increasing fracture density for each configuration in our models are
nearly linear. This may warrant extrapolations using the last
segment of the curves (for r between 0.1 and 0.2) to estimate the
critical fracture densities corresponding to the vanishing values of
shear moduli components. Hence, G55 and G44 plots for the inter-
section angle of 15� provide 0.9 for the critical density which is the
upper bound for cataclastic failure. The qGp for pure shear gives the
highest critical fracture density on the order of about 4, which
implies that the failure will occur earlier due to a more significant
weakening of the other elastic parameters. Although the Young’s
moduli curves showing greater decreases (E33) appear to be highly
nonlinear, again the last linear segments are used to approximate
the densities corresponding to the vanishing value of this compo-
nent. For these cases the critical values of densities are close to each
other for each angular configuration being between 0.88 and 1.01.
Just to provide a spacing value to which the JSG reader can relate to:
These roughly correspond to a single set fracture spacing of about
5 cm for a 5 cm thick bed and 2.5 cm for two sets fracture spacing.
However it is possible that cataclastic failure may occur at spacings
lower than that for thinner layers and having the bedding interfaces
fail as part of the fragmentation process which has not been
considered in our analyses.

6. Discussion

The premise behind the present study is that the patterns of
fractures at strike-slip fault steps and inner damage zones adjacent
to fault rocks is complicated but can be simplified to represent the
local damage fairly well. Due to high density of fractures, the
mechanical properties of the rock masses at these locations are so
altered that a new paradigm is required to analyze the conditions
leading to the growth of faults by linkage of neighboring segments
and by enlargement of fault rock into the adjacent inner damage
zone through cataclastic deformation. The rationale for this
premise is three fold. First, laboratory studies on porous granular
rocks show a nearly linear trend between uniaxial strength and the
Young’s modulus (Palchik, 1999) and shear strength and the shear
modulus (Holt et al., 1987). Second, there is a theoretical basis in
linear elastic fracture mechanics (LEFM) for the fracture toughness
being equal to the Young’s modulus times the strain energy release
rate. Thus, the toughness is proportional to the Young’s modulus for
a given fracture extension though in homogeneous elastic medium
(Lawn and Wilshaw, 1975). Third, as has been referred to in this
paper, the compliance matrix for anisotropic elastic materials links
stresses to strains and should be crucial for determining the
deformation of rocks including their yielding or failure.

Thus, this premise separates the present study from those using
single linkage structure whether in opening, closing, or shearing



Fig. 12. Plots showing the variation in elastic moduli of rocks with prescribed fracture patterns (defined by the angle, FF, between two fracture sets as 15� , 30� , 45�and 60�) and
a range of fracture densities (r from 0.0 to 0.2). (a) The three components of the Young’s moduli (E11, E22, and E33) with increasing fracture density. The nearly horizontal solid blue
line near the top represents all four E11 plots for the density range and for all four angles between the fracture sets (the lines just overlap). (b) The three components of the shear
moduli (G44, G55, and G66) for the four angles with increasing fracture density. (c) The quasi-shear moduli for pure shear for the same four angular configurations and density range.
This moduli show the least decrease in magnitude with respect to that for no-fracture state.
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modes in pristine rock within the context of the LEFM (see for
example, Segall and Pollard, 1980; Du and Aydin, 1993, 1995; Crider
and Pollard, 1998; De Bremaecker and Ferris, 2004). In this regard,
the underlying reasoning in our approach is similar to that of the
damage concept of Lyakhovsky et al. (1997); and Lyakhovsky and
Ben-Zion (in review) if the fracture density is a proxy for the
damage parameter in their model. On the other hand, the linkage
criteria for the normal fault relays in map view investigated by
Soliva and Benedicto (2004) is not quite analogous for the strike-
slip fault configurations considered in our study for the simple
reason that the map view of normal faults does not contain the slip
vector. However, the displacement/segment separation ratio,
which is a measure of the shear strain across fault steps, used by
these authors to characterize various stages of fault linkage may be
related to the fracture density used in our study for strike-slip fault
steps. It is likely that the fracture density is related to the shear
strain across the zone, however, the nature of such a possible
relationship between these parameters is not yet known.

It appears that the underlying mechanical principle for fault
growth processes and many of the related scaling relationships is
controlled by the stress concentration at fault tips and its length
dependence. First, for a simple mode II fracture, the stress
components at a point in the regions away from the fracture tips
decay as (a/r)2 for 2D (Pollard and Segall, 1987) and (a/r)3 for 3D
(Ben-Zion and Sammis, 2003), where a is half fault length and r is
the radial distance to the center of the fault. Second, fault interac-
tion is an important factor in the final fault geometry of discon-
tinuous strike-slip faults (Aydin and Schultz, 1990). It turns out that
the relative locations of the neighboring fracture tips do have
a strong impact on echelon mode II fracture geometry but this
influence is more or less independent of the sense of echelon steps.
The data on the step size and distribution are also consistent with
the earlier results in that larger steps are associated with longer
fault segments and, presumably, higher slip magnitudes.

Steps or relay ramps between echelon strike-slip faults include
various structures (joints, pressure solutions, other faults, and
folds) and eventually are cut by a through-going fault connecting
the echelon fault segments. In our study area, the failure structures
at steps and around the fault core are generally mode I fractures
formed either under tensile local stresses (Segall and Pollard, 1980)
or compressive local stresses (Horii and Nemat-Nasser, 1985).
However, shear bands (Aydin et al., 2006; Shipton and Cowie, 2003)
are occasionally observed at narrow contractional steps (Davatzes
et al., 2003), which are neglected in this study.

Earlier experimental and theoretical studies have proposed
buckling (Peng and Johnson, 1972) and bending (Renshaw and
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Schulson, 2001) of thin and slender rock slabs between a set of
fractures as a mechanism for through-going shear fracture forma-
tion. It is difficult to identify these mechanisms in the field. As the
field data show, most fracture-bounded blocks have diamond
shapes due to dihedral intersection angle between the fracture sets
and may not be favorable either for buckling or bending. Rather, the
triangular areas at the intersection of the fractures appear to be
most prone to further fracturing and fragmentation. The rotation
and translation of some fracture-bounded rock blocks with respect
to the neighboring blocks can be identified in advanced stages of
deformation, particularly within slivers preserved within fault
cores. However, the relative timing of these rotations and relative
motions with respect to the shear zone evolution cannot be
determined.

The presence of multiple sets of fractures formed by splaying
within fault steps and inner damage zones with intersection angles
different than 90�, requires that all but the youngest set of fractures
are sheared. However, it is reasonable to assume that even
a sheared joint would be associated with a series of narrow
pull-aparts due to common joint surface roughness introduced by
hackle and rib marks. Thus, these slightly sheared joints would
have collinear open fractures along their lengths and, therefore,
they can be represented as a series of rectangular flat fractures for
the purpose of the effective properties calculations.

The fracture intersection angles in the study area are controlled
by the splay angles (Fig. 5) which show a broad range of variation
(de Joussineau et al., 2007). This variation is in part due to potential
interaction between closely spaced subparallel faults. For example,
the average value of the splay angles is 19� for isolated single faults
whereas the average splay angle reaches 50� for closely spaced
interacting subparallel faults (Table 1a). It suffices to say that these
average values are well within the range (15–60�) used in the
effective medium models in our study. However, the effective
properties based on the high end of the intersection angles
(45–60�) are more appropriate for fractured slabs between closely
spaced subparallel faults.

The critical fracture density of about 1.0 corresponds to the
lowest vanishing values of shear moduli components (G55 and G44)
for the smallest intersection angle (15�) and one of the Young’s
moduli components, E33, for all four intersection angles used in the
modeling study. Thus, for this density, the average spacing value for
one set of fractures is 5 cm for a 5 cm thick bed (see Eq. (3)) and
2.5 cm for two overlapping sets as deduced earlier. However, the
problem with the critical density or spacing values is that they can
never be captured in the field because once the instability is
reached, the fracture systems are obliterated. We just defined an
envelope by tabulating the lowest fracture spacing without
disturbance or obliteration around a series of individual faults.
Comparing the theoretical results with the minimum spacing range
(w1–5 cm) defined by the first linear segment of the spacing
distribution data from the study area (Table 1b), indicates that the
calculated and measured spacing values match quite well.
However, the way that fracture spacing was measured in the field is
sensitive to the direction of scanline with respect to the fracture
orientation. Because the scanlines are approximately perpendicular
to the individual faults for single faults, and to the dominant faults
for a system of faults, one set of fractures is perpendicular to this
orientation and they would provide true spacing. Whereas, the
other fracture set would differ from the right angle orientation to
the scanline as much as the range of splay angles given in Table 1a.
Considering the average values for the most common splay angles
of 19–50�, the true spacing values would defer from the measured
values by a factor of 0.95 and 0.64, respectively. However, the actual
difference between the calculated and measured fracture spacing
depends on the fracture angles from the scanline as well as their
frequency as illustrated for one of the well-studied faults, the 14 m
fault (Table 1, inset 2). Here more than 75% of the measured fracture
angles are at high-angle (50–90�) to the scanline orientation
requiring a maximum correction factor of about 0.77. Even with this
correction, the theoretical and field values for the critical fracture
spacing are in the same order of magnitude. These results may also
imply that the lack of a large number of fracture spacing under
a critical value of 1–2 cm in fault-related fracture spacing distri-
bution plots may be due to the destruction of those fractures with
spacing value equal to or smaller than that of the critical value. This
type of tapering in frequency plots is commonly interpreted in
terms of the minimum resolution and its impact on sampling error.
Albeit, considering the minimum resolvable spacing measurement
of 0.5 cm in our survey, it is likely that the initial tapering is not
because of limited sampling of this range of spacing but the
destruction of those fractures with spacing under a critical value.

We should also point out that cataclastic failure may occur at
fracture densities corresponding to nonzero values of the moduli
and having bedding interfaces fail as part of the fragmentation
process which has not been considered here. The quasi-shear
modulus for pure shear gives the highest critical fracture density of
slightly larger than 4 for one fracture set. In light of other results,
this implies that the failure will occur earlier due to weakening of
the other elastic parameters for a given fracture density.

7. Conclusions

In this paper, we conceptualized fault growth in terms of
increasing dimensions of fault zones with fault slip and provided
examples from the same structural and lithological setting. We
idealized complex fracture geometries at strike-slip fault steps and
inner damage zones in order to use the effective medium models
for gaining an insight in the influence of the faulting-related
fractures on the mechanical properties of rocks along and around
the faults. Our results indicate that a significant reduction
(w20–34%) in most components of the Young’s, shear, and quasi-
shear (for pure shear) moduli of the fractured rock masses should
occur as the fracture density increases modestly. The extrapolated
values of the Young’s and shear moduli for the fracture configura-
tion which resulted in the greatest moduli reduction would suggest
an upper bound value for a critical density of about 1. This corre-
sponds to a critical fracture spacing value on the order of 5 cm for
a bed thickness of 5 cm for one set, and 2.5 cm for two overlapping
sets. The spacing values defined by the minimum values associated
with the line fit to the lower ends of the measured spacing distri-
butions from the study area suggest that the undisturbed smallest
fracture spacing is about 1–2 cm with a possible correction factor of
0.77, which still amounts to the same order of magnitude as the
modeling results. This also implies that the lack of a large number of
fracture spacing below 1–2 cm in fault-related fracture spacing
distribution plots may be due to the destruction of most fractures
with spacing under a critical fracture spacing value.
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